Further results on almost Moore digraphs
نویسندگان
چکیده
The nonexistence of digraphs with order equal to the Moore bound Md;k = 1+d+: : :+d k for d; k > 1 has lead to the study of the problem of the existence ofàlmost' Moore digraphs, namely digraphs with order close to the Moore bound. In 1], it was shown that almost Moore digraphs of order Md;k ? 1, degree d, diameter k (d; k 3) contain either no cycle of length k or exactly one such cycle. In this paper we shall derive some further necessary conditions for the existence of almost Moore digraphs for degree and diameter greater than 1. As a consequence, for diameter 2 and degree d, 2 d 12, we show that there are no almost Moore digraphs of order Md;2 ? 1 with one vertex in a C2 except the digraphs with every vertex in C2 .
منابع مشابه
Subdigraphs of almost Moore digraphs induced by fixpoints of an automorphism
The degree/diameter problem for directed graphs is the problem of determining the largest possible order for a digraph with given maximum outdegree d and diameter k. An upper bound is given by the Moore bound M(d, k) = ∑k i=0 d i and almost Moore digraphs are digraphs with maximum out-degree d, diameter k and order M(d, k)− 1. In this paper we will look at the structure of subdigraphs of almost...
متن کاملNonexistence of Almost Moore Digraphs of Diameter Four
Regular digraphs of degree d > 1, diameter k > 1 and order N(d, k) = d+· · ·+dk will be called almost Moore (d, k)-digraphs. So far, the problem of their existence has only been solved when d = 2, 3 or k = 2, 3. In this paper we prove that almost Moore digraphs of diameter 4 do not exist for any degree d.
متن کاملMultipartite Moore Digraphs
We derive some Moore-like bounds for multipartite digraphs, which extend those of bipartite digraphs, assuming that every vertex of a given partite set is adjacent to the same number of vertices (δ) in each of the other independent sets. We determine when a Moore multipartite digraph is weakly distanceregular. Within this framework, some necessary conditions for the existence of a Moore r-parti...
متن کاملOn the nonexistence of almost Moore digraphs of diameter four
Almost Moore digraphs appear in the context of the degree/diameter problem as a class of extremal directed graphs, in the sense that their order is one less than the unattainable Moore bound M(d, k) = 1 + d + · · · + d, where d > 1 and k > 1 denote the maximum out-degree and diameter, respectively. So far, the problem of their existence has only been solved when d = 2, 3 or k = 2, 3. In this pa...
متن کاملOn diregularity of digraphs of defect two
Since Moore digraphs do not exist for k 6= 1 and d 6= 1, the problem of finding the existence of digraph of out-degree d ≥ 2 and diameter k ≥ 2 and order close to the Moore bound becomes an interesting problem. To prove the non-existence of such digraphs, we first may wish to establish their diregularity. It is easy to show that any digraph with out-degree at most d ≥ 2, diameter k ≥ 2 and orde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ars Comb.
دوره 56 شماره
صفحات -
تاریخ انتشار 2000